

Case Study: Evaluating an Automotive User Interface Design

June 20–22, 2023 | Santa Clara, CA

#SensorsConverge

Agenda

- Overview
- Mechanical Switch Basics
 - Typical operation
 - Failure modes
 - Maintenance
- Design Goal
- Push-button Knob
 - Sensor replacement
 - Simulation
 - CORDIC

- Turn Indicator
 - Sensor replacement
 - Simulation
 - Vector Angles
- Test Results
- Demonstration
- Summary

Steering column stalk module

Mechanical wiper contact basics

Wiper controls slide across a resistive surface and create a changing voltage divider

 Cantilevered throws toggle between open and closed positions to change electrical path

Mechanical wiper challenges

• Mechanical wear can result in slippage

• Oxidation and corrosion can prevent good contact or result in stuck relays

Wetting current and diagnostics

Three dimensional sensors

7

Push-button knob function

Unpressed Knob Simulation

Converae

#OCHOUSOUNCIGE

Magn

TI Information – Selective Disclosure

CORDIC algorithm

Coordinate	
Rotation	$Error = 49.5^{\circ}$
	- 45°
Digital	- 26.56°
Computer	+ 14.04°
	+ 7.13°
	+ 3.58°
	- 1.79°
	- 0.90°
	$\cong 0^{\circ}$

Turn indicator function

Turn indicator simulation

- Motion parameters
 - Lock into 3 horizontal positions: -8, 0, +8 degrees
- Magnet Selection:
 - N52
 - 12.7mm x 6.35 mm x 3.175 mm
 - (0.5 in x 0.25 in x 0.125 in)
 - Default tilt at 5 degrees
 - Magnet Center 30 mm from fulcrum
- Sensor placement
 - Tilted 10 degrees on bracket align to magnet
 - 34 mm from fulcrum

Turn indicator simulation

Sensors Converge

Alpha and Beta angles

Push-button Headlamp / Wiper Speed Control Knob

Steering Column Stalk Position

Beta (deg)

Functional demonstration

Summary of results

- 3D Magnetic Hall-effect sensors track angular position for magnets in both lever and knob controls
- Integrated diagnostics reduced additional circuitry
- Contact free form factor eliminates need to maintain contact using wetting current
- Measurements are primarily limited by mechanical tolerances
- Invalid data can be used to indicate a mechanical fault in the system
- Integrated angle calculations using CORDIC algorithm can free up microcontroller instructions

