

nichicon america

Optimization of Energy Storage in IoT Devices

June 20, 2023 | Santa Clara, CA Mark Gebbia, Sales Application Engineering Manager

Company Data

Company Name	NICHICON CORPORATION	
Established	August 1, 1950	
Employees	5,209	
Revenue	184.725 million Yen March 31, 2023	
Stock Listings	Tokyo Section 1	
Product Lines	Aluminum, Polymer Aluminum, Hybrid Polymer Aluminum, Small Lithium-Titanate Rechargeable Batteries, Film Capacitors, EDLC Capacitors, Functional Modules, Positive Thermistors, Switching Power Supplies, ICEL by Nichicon Films, Capacitors for Applied Systems and Equipment	

Nichicon Products at a Glance

Aluminum Electrolytic Capacitors

Conductive Polymer Capacitors

Hybrid Aluminum Polymers

Film Capacitors

Electric Double Layer Capacitors

Small LTO Rechargeable Battery

#SensorsConverge

EDLC/Supercapacitors

Electric Double Layer Capacitor's

- Activated Carbon electrodes
 - Extremely large surface area
- No dielectric unlike standard capacitors
 - Energy stored on surface
- Energy stored in carbon/ electrolyte interface area on both plates. (Electric Double layer)
- Environmentally safe electrolyte (Nichicon EDLC's)

Electric Double Layer Capacitor's

 \checkmark Capacitance values up to several thousands of Farads in a single package.

- ✓ Voltage limited to 2.7VDC per capacitor cell.
- ✓ Maximum temperature 70°C, 85°C with voltage derating.
- ✓ Discharge times can be very short (<1 second).
- ✓ Up to 1,000,000 charge/discharge cycles.

✓Applications: Battery backup, Battery alternative, Pulse power, DC-DC converters, Actuators, LED displays, Scanners, Wind power, Audio systems

Lithium-lon Rechargeable Batteries

Why Lithium?

✓ Lightest metal in the periodic table

- ✓ Greatest electrochemical potential
- ✓ Largest specific energy/kg
- ✓Wider temperature range
- ✓High reliability
- ✓Long cycle life (Compared to other battery types)
- \checkmark Higher charging/ discharging rate

How a Li-ion Battery Works

Charging

Charging current causes Li-ions to be released. Flow from cathode to Anode.

Discharge

Li-ion flow from Anode to cathode. Electrons (Current) flows into circuits.

Special "Negative Electrode" of LTO

What's the difference between the LTO and conventional Lithium-Ion Rechargeable Batteries?

Negative Electrode

Li-ion reaction is 0.1V Thick SEI (solid electrolyte interphase) Higher electrolyte decomposition Higher resistance

LTO reaction 1.55V Thin SEI(solid electrolyte interphase) Low electrolyte decomposition Low resistance

Li-ion Batteries vs EDLC

<u>EDLC</u>

- Can be charged/ discharged repeatedly thousands of time
- ✤More stable with temp.
- ✤Higher power density
- ♦Wider temperature range
- Non flammable
- ✤Board mountable

Li-ion Batteries

- ✦Higher energy density
- Discharge over a longer period of time
- Smaller in size
- Low cost
- ↔Higher voltage

Discharge (EDLC vs Battery)

EDLC's – voltage drops as parts discharge

Q=It

Battery – Voltage constant until discharge complete

Circuit Board Energy Storage Devices

Energy Density (Wh/kg)

Long Life (LTO vs. Li-ion)

Long Life: Over 80% capacity after 20,000 charge/discharge cycles.

EDLCs can do 1,000,000 charge/ discharge cycles

Charge/Discharge Characteristics

Low-current Charging

<u>Test conditions</u> Charging current; 5µA (=0.014C)

EDLCs & Li-ion cannot be charged at this low of a charging current

Discharge to 0V (Depth of Discharge)

EDLC not damaged if discharged to OV Li-ion can become damaged

Overcharge

LTO battery

Can withstand up to 20% over rated voltage

<u>EDLC</u>

Can withstand up to SVDC (~8%) Li-ion

Can become damaged

Self Discharge (EDLC vs LTO)

LTO self discharge superior to EDLC

	EDLC	LTO
Temp(°C)	25	25
Charge Voltage (VDC)	2.7	2.8
Time (days)	30	40
Final voltage (VDC)	1.97	2.66
ΔVDC	-27.04	-5

Temperature Characteristics

LTO No Lithium Deposition

Safety

Extremely low risk of **rupture or ignition** from internal short circuit (LTO).

No.	Test Item	Result (Li-ion)	Result (LTO)	LTO Rechargeable Battery
1	Crushing	ignition	Extremely low risk of rupture or ignition	
2	Nail penetration test	ignition	Extremely low risk of rupture or ignition	
3	Blunt nail test	ignition	Extremely low risk of rupture or ignition	Safe
4	External short circuit	ignition	Extremely low risk of rupture or ignition	Crush Test Nail penetration test
5	Over charge	ignition	Extremely low risk of rupture or ignition	After test After test
6	Forced discharge	ignition	Extremely low risk of rupture or ignition	

Comparison (EDLC vs Li-ion vs LTO)

	EDLC	Li-ion	LTO
# of cycles	>500k	<5k	20k+
Widest Temp Range (without de-rating)	-40/70°C	-20/60C	-30/80°C
Max Voltage	3.8V	3.7V	2.8V
Board-mountable (solderable)	Yes	no	Yes
Energy Density	Lowest	Highest	Middle
Safe to use	No fire	Fire	No fire
Abuse (over voltage/ Discharge)	SVDC	none	Yes
Low charging current (<1C)	None	None	0.01C
Discharge rate	1C	5C	20C (100C)

IoT Applications

Stylus Pen – Samsung

* Previous smartphone models used EDLC capacitors. The EDLC has been replaced with the Nichicon LTO battery in a φ3x7Lmm case size. The key for Samsung adoption was the LTO ability to handle the increased power consumption that is required due to new S Pen functions.

Maintenance Free Sensor Network

Electric Shelf Label - Prototype

Maintenance-free ESL

Electronic Shelf Tag, which is maintenance-free and can be updated frequently. Powered by in-store lighting and can be updated by using a PC or mobile device

Reverse side

Three advantages of maintenance-free electronic shelf tag.

Can be frequently rewritten because it is powered by solar cells Electricity is generated by the light energy obtained from the store lighting, allowing you to eliminate the limitation on the number of rewrites available.

Power saving circuit and rechargeable battery for maintenance-free operation.

Driven by energy harvesting, no battery replacement is required!

BLE / NFC communication allow for management and promotional updates on the fly.

Rewriting the shelf tag data in the application and guiding the user to the link via NFC communication.

Small Lithium-Titanate Rechargeable Battery

Wound vs Coin Cell Battery

Specification	Coin cell	Through hole	
Image		SLB12400LISI 2-49 michilen 451820 R +	
Chemistry	Lithium nickel manganese cobalt dioxide	LTO	
Capacity (mAh)	150	150	
Voltage (VDC)	3.7	2.8	
Dimensions (DxL)	24.5x4.3 mm	12.5x40 mm	
Temp Range	-20°C to 80°C	-30°C to 60°C (80°C)	
Charge rate	0.5C (~3 hours)	20C (3 minutes)	
Discharge rate	0.2C	20C (100C)	
Weight (grams)	5.4	9	

michicon america

Booth 729