

Accurate Soil Moisture Sensing

Accurate soil sensing using changing magnetic properties with moisture Bruce Borden $\int \operatorname{arm}(x)$ June 20–22, 2023 | Santa Clara, CA

Soil Moisture Sensing for Precision AgTech

Example use case:

Soil moisture sensing on a commercial farm to determine needed irrigation in an orchard

Determining percolation rate and water usage using soil moisture sensing

Soil Moisture Sensor Evolution

Fork Sensing Single-level Capacitive Sensing Circa 2000 Drill and Drop Multi-level Capacitive Sensing Circa 2010 Drill and Drop Multi-level Magnetic Sensing Circa 2020

Range of Capacitive vs. Magnetic Comparison

Capacitive

Most of the water measured is sensed within l"of tube. Heavily influenced by water running down tube outside wall.

Magnetic Permeability changes with moisture

Loam Soil Moisture (VWC)	μ _r @120 MHz
2.5%	0.94
8.2%	0.95
25.6%	0.97

Values of Relative Permeability (µ_r) taken from soil measurements made under supervision of Sandia National Laboratories, see: https://inis.laea.org/collection/NCLCollectionStore/_Public /27/040/27040410.pdf

Detecting shift in magnetism in the sensor

Variable Core Inductor

Inductance shifts with moisture by detecting change in magnetic permeability

- The sensor's antenna acts as a "variable core inductor" when coupled to soil
- The magnetic permeability of the "variable core inductor" changes as the soil varies from dry to wet. This shifts the inductance in an oscillator tank circuit, which we measure.
- Inductance of the variable core inductor is proportional to the magnetic permeability
- Example inductances as moisture changes:
 - Dry Conditions has an inductance of 1304 nH
 - 50% Wet Conditions has an inductance of 1324 nH
 - 100% Wet Conditions has an inductance of 1344 nH
- Not a perfect model as there are small losses in the enclosure and packaging

Example sensing element electronics

Sim u la tion of Full Dry

Antenna Inductance is 1304 nH Primary Frequency: 59.01 MHz 2nd Harmonic: 118.02 MHz

In simulations, the VF2 sine wave is "flatter" than the VF1 sine wave. This is achieved by the transistor bias. This flattening of the spectrum for VF2 induces both a 1st and 2nd harmonic, as shown by a Spectrum Analyzer measurement in Air. Need nom inally 120 MHz for sampling soil moisture (2nd harmonic), which is seen with this trace:

Sensing element with it's antenna

Antenna:

- Wraps on outside of a clamshell
- Secured in place with clips
- Soldered to a header on the PCB assembly that has the oscillator circuit on it

PCBA with antenna is enclosed in a waterproof outer pipe during final assembly

Top view of a Single Sided Flex Circuit 80 mil traces Center tap antenna 2.6 inches by 5.5 inches

Field Results: Magnetic vs. Capacitive Sensing

Magnetic Sensing

Capacitive Sensing

Benefits of larger sensing volume of soil moisture

Benefits of larger sensing volume:

- Hydrostatic -- moisture. Hydrodynamics speed of water
- We measure moisture flow over time
- Continuous sensing volume not slices at sensed depths enables soil water flow through root zone monitoring by sensing directional flow, both up and down
- Larger sampling volume reduces anomalous readings from rocks and cracks

Magnetic Sensing

Capacitive Sensing

farm(x)

- Soil moisture sensing is critical for improving cost effectiveness of irrigation for commercial farming
- A new generation of soil sensing is possible by measuring the shift in the magnetic properties of soil when it changes its moisture content
- The implementation of a sensor is cost effective and low power, which enables commercialization of this technology
- Growing food effectively is possible with better utilization of resources, enabled by sensing farm conditions, including it's soil moisture content during irrigation

