PRINTED / FLEXIBLE /STRETCHABLE AND FUNCTIONAL FABRIC/ E-TEXTILE SENSORS AND SENSOR-BASED SYSTEMS: TECHNOLOGY LAUNCHPADS TO ENABLE EMERGING APPLICATIONS

PART 1: INTRODUCTION AND OVERVIEW

Sensors Converge Precon Santa Clara California Convention Center June 20, 2023 Roger H. Grace President, Roger Grace Associates rgrace@rgrace.com <u>www.rgrace.com</u>

SESSION OVERVIEW

- 10 Speakers (including me...providing introduction and summary))
- 20-minute presentations, two-25 minute keynotes
- Q and A to occur at the conclusion of the a.m. and p.m. sessions...using 3" x 5" notecards for questions from audience
- 15 minute mid-session breaks, one hour lunch break
- Kindly complete the questionnaire and it will be collected before the conclusion of the afternoon session...\$50 Amazon gift card to the lucky winner
- The most highly concentrated presentation of speakers on the topic of printed/flexible/stretchable and e-textile/smart fabric sensors to date
- For the first time we will address 3D printing...thanks to Doug Sparks
- Virtually all-new program from previous with small number of "return" speakers

RKETING

• Copies of the presentations will be made available by Questex

A.M. SESSION

•	9:00-9:05	Welcome Roger Grace, Roger Grace Associates, Workshop Organizer and Chairman						
•	9:05-9:25	Roger Grace, Roger Grace Associates, Introduction and Overview of Printed, Flexible, Stretchable and Functional/E-Fabric Sensors and Sensor-Based Systems						
•	9:25-9:50	Ravinder Dahiya Ph.D., Northeastern University, High-Performance Printed Electronics on Flexible Substrates (KEYNOTE)						
•	9:50-10:10	Rob Podoloff, Tekscan, Design Considerations when Embedding Tactile Force Sensors-What OEMs Need to Know						
•	10:10-10:30	Radislav Potyrailo Ph.D., GE Research, Conventional versus New Generation Gas Sensing: Meeting the Demanding Needs of Flexible Electronics and Emerging Markets						
•	10:30-10:45	Morning Break						
•	10:45-11:05	Doug Sparks Ph.D., Micro2Nano Technologies, 3D Printing Enables Complex Manufacturing Processes for Sensors						
•	11:05:11:25	Robert Malakhov Ph.D., NextFlex, Additive Hybrid Electronics for Novel Wearable Devices						
•	11:25-11:45	Maurizio "Mac" Macagno, Sensoria Health, A Gait Lab in a Textile Sensor-Infused Sock						
•	11:45-12:00	Q and A						
•	12:00-1:00	Lunch (Hosted)						

COUNSEI

MARKETING

P.M.SESSION

•	1:00-1:10	Welcome Roger Grace, Roger Grace Associates, Workshop Organizer and Chairman
•	1:10-1:35	Helena Alves Ph.D., INESC (Portugal), Self-Sustainable Textile Sensor Power Sources Based on Low- Cost Printing (KEYNOTE)
•	1:35 -1:55	Stephanie A.T. Brown, U.S. Army Combat Capabilities Development Command, Sensored Soldier at the Tactical Edge
•	1:55 -2:15	Sean Garbarino, DCS, E-Textile Based Systems for Damage Detection and Status Monitoring for Military and Other Applications
•	2:15-2:35	Roger Grace, Roger Grace Associates, Summary and Conclusions of Printed, Flexible, Stretchable and Functional/E-Fabric Sensors and Sensor-Based Systems
•	2:35-3:00	Q and A

MEA CULPA

- My colleagues have oft-times accused me of making "text-rich" presentations...and while I agree...the rationale for this is that I wish to provide the attendee with information that they can "take home" and use...rather that trying to remember my rambling comments or taking copious notes to collect the data points.
- I trust that you can appreciate my position on this...and thank you for your kind understanding.

PRESENTATION OUTLINE

- Definitions
- Why printable/flexible/stretchable and E-Textile/smart fabric sensors?
- Situational analysis
- Market analysis
- Technology status of printed/flexible system functionalities
- Manufacturing process
- Industry activities
 - Commercial
 - Research/Academic
- Critical Success Factors
- Monetizing
- Summary/Conclusions/Recommendations

ROGER GRACE BACKGROUND

- Education: BSEE, MSEE (Raytheon Graduate Fellow) Northeastern University, Boston, MA; MBA Program, California Berkeley
- Design Engineer with specialty in microwave and RF, 13 years...Raytheon, Avco
- Applications Engineer, RF semiconductors, 3 years, Avantek/HP
- Marketing Manager, MEMS, 3 years, Foxboro ICT
- Marketing Consultant, MEMS, Sensors and Semiconductors, 40 years
- Guest Lecturer, University of California Berkeley, 1990-2003
- Alumni Engineer of the Year, 2004, Northeastern University
- Co-Founder ,Past President and Board member of Micro ,Nano and Emerging Technology Commercialization Education Foundation (MANCEF)
- Published over 70 papers and articles on MEMS/Sensors/Commercialization
- Organized and Chaired over 30 technical sessions worldwide on MEMS/Sensors
- Board membership...Florida MEP, University of Michigan WIMSS, Northeastern
 University High Rate Nanomanufacturing Center
- Organizing committee includes IEEE Transducers 2009,COMS, Smart Systems Integration (EU), Advanced Microsystems for Automotive Applications (EU), Bestowed Inaugural "Sensor Industry Impact Award" by Sensors Expo/Sensors Magazine 2016

MARKETING

COUNSE

ROGER GRACE ASSOCIATES OVERVIEW

- Founded in 1982, a pioneer in the MEMS/Sensors strategic marketing and analysis sector <u>www.rgrace.com</u>
- Clients include the "who's who" of industrial and government organizations worldwide
- Headquartered in Bonita Springs, Florida / San Francisco, California
- Focus on MEMS/Sensors and Capital Equipment markets
- Capabilities include...refer to next PPT.
 - Custom market research...product definition, application opportunity assessment,
 - New product introductions
 - Market strategy development
 - Merger and Acquisition (M&A) due diligence
 - Sales and distribution channel development
 - Integrated marketing communications
 - Promotion
 - Public Relations
 - Positioning and Branding

TECHNOLOGY COMMERCIALIZATION* PROCESS MODEL

ROGER GRACE ASSOCIATES

Roger Grace Associates supports its clients in front and back-end market analysis as well as in the product launch plan and execution

MARKET RESEARCH METHODOLOGY

- PRIMARY: OVER 120 in-person, in-lab and telephone in-depth interviews with technology participants beginning in early 2015...and continuing
- SECONDARY: Data mining vis-à-vis the web ...addressing the entire ecosystem of participants
- Attendance at several technical conferences and trade shows
- Participation in webinars

WHY PRINTED / FLEXIBLE / STRETCHABLE & E-TEXTILE / SMART FABRIC

Attribute		Benefit				
	Cost	Functionality				
Printed	 Low Infrastructure Low Unit (R-2-R) 	 Large device size Arraying capability Low profile Ease of hybrid integration Reduced time to market 	Fabric			
Flexible		 Application driven (especially human interface) 	Printed			
Stretchable		 Application driven (especially human interface) 	Stretchable			
E-Textile/ Smart Fabric	 Low Infrastructure Low unit 	 Application driven (especially human interface) Large device size Arraying capability Low profile 				
			ROGER GRACE ASS			
			MARKETING CI			

COMMERCIALIZATION DRIVING FUNCTIONS

- Small size / low profile / low weight
- Ability to conform to attaching surfaces...especially in bio applications
- Robust and highly reliable vis-à-vis judicious material selection
- Low manufacturing cost based on existing batch mode processing with the ability to be scaled to a uber- high volume / uber low cost roll-to-roll (R2R) or weaving manufacturing approach
- Enhanced performance over discrete 3-D solutions because of their size and geometry
- Device-to-device uniformity
- Low CAPEX requirements for manufacturing
- Ease for integration (including discrete) of other functionalities onto same or layered carriers...hybrid approaches

- Ability for arraying
- Large area coverage capability
- Expected to benefit from momentum of popularity of Flexible Hybrid Electronics (FHE) and associated manufacturing capabilities

SENSOR-BASED SYSTEM SOLUTIONS

SITUATIONAL ANALYSIS

- Printed/flexible sensors are a logical extension of printed displays (OLED) and Flexible Hybrid Electronics (FHE) electronics...and are chemistry and materials (not electronically) driven and are truly a convergence of technologies
- First commercially success in 1985 by Interlink Electronics and followed by TekscanForce Sensing Resistors (FSR)
- To be considered as a compliment / not replacement to Silicon functionalities
- Use much the same infrastructure as printed electronics
- Sensors typically have simple structures and thus easy to manufacture
- Flexible / extensible manufacturing processes:
 - Batch mode for low-to-medium volume applications
 - Roll-to-Roll (R2R) for large volume applications
- Only a small number of companies currently in volume production
- Significant activity in agencies, research labs and universities worldwide
- Many possible application opportunities with a focus on major opportunities for wearables e.g. sports monitoring and home healthcare monitoring
- High volume application opportunities expected to fuel dramatic growth
- Adequate market research coverage to date...i.e. IDTechEx, Modor, Research and Markets

MARKETING

• Limited design and analysis tools currently available

WHERE IT ALL BEGAN

Johannes Gutenberg; Mainz, Germany 1440

ROGER GRACE ASSOCIATES

ECOSYSTEM

- Broad and in-depth (many suppliers for each) ecosystem in place in the value chain
- Suppliers include:
 - Materials, chemicals
 - Equipment
 - Sensors
 - Interconnects
 - Integration
 - Packaging
 - End product design
 - Manufacturing
 - Design, layout and analysis tools
 - Sales and distribution of final product
- Collaboration up and down the value chain will be critical for participants success...one cannot successfully go it alone

EMERGING HIGH VOLUME APPLICATION OPPORTUNITIES

- It is common knowledge that many high volume applications exists...however the big question is which are the most lucrative ones and when?
- Need to take into account the "Grace / Walsh 30 year development process for MEMS"
- Current acknowledged current application opportunities include:
 - Package tracking
 - International monitoring of the environment by chemical / gas sensors connected by mobile networks
 - Disposables....e.g. diapers
 - Wearables ... Personal health / fitness monitoring e.g. "e-medical"/ military battlefield
 - Food, beverage and drug status monitoring...e.g. UCBerkeley
 - Patient activity monitoring

DEVICE MATERIAL COST COMPARISON

DESIGN & MANUFACTURING PROCESS

- Complex process flow...lots of "landmines" to avoid
- Critical to have design & manufacturing "kickoff" meeting to bring all aspects of the design & manufacturing involved and addressed from day 1
- Decision on printing process driven by several factors...Sheet fed or Roll-to-Roll
 - Volume
 - Specifications
- Scalability...start with sheet-fed for prototypes and low volumes...migrate to Roll-to-Roll for large volumes
- Selection of base materials and inks is critical to performance and manufacturability
- "Converters" or ... packagers ... integrate the sheets into the final products
 - Cutting
 - Lamination
 - Connection to the outside world

Printed Sensors Market Summary

PRINTED / FLEXIBLE /STRETCHABLE AND FUNCTIONAL FABRIC/ E-TEXTILE SENSORS AND SENSOR-BASED SYSTEMS: TECHNOLOGY LAUNCHPADS TO ENABLE EMERGING APPLICATIONS

PART 2: APPLICATIONS / SUMMARY/CONCLUSIONS

Sensors Converge Precon Santa Clara California Convention Center June 20, 2023 Roger H. Grace President, Roger Grace Associates rgrace@rgrace.com www.rgrace.com

MARKETING

COMMERCIAL ACTIVITIES

CURRENT COMMERCIALIZATION PLAYERS

- Limited "reported" activity in sensors production
- No apparent large volume producers
- No apparent "big dogs" involved (yet)...e.g. Bosch, ST, ADI, Freescale ...however we believe that "big dogs" are funding efforts in P/F and FF visà-vis subcontracts with research institutes and universities
- Over 100 smaller players worldwide addressing individual parameters
- Virtually all current participants not "traditional" sensor companies but rather materials / chemical companies e.g. Brewer Science

- Sensor parameters currently being addressed include:
 - Chemical/gas
 - Touch/force/pressure
 - Temperature
 - Humidity
 - Bio
 - Air flow
 - Imaging
 - Conducting electrodes

SUPPLIER LANDSCAPE

Force The Hi Elec. Bio to Time or											
Company	st atur		4 Qe	strode	- Orel		Shoe	A Sh	, ^E loj	othe	2~
BodiTrack/Vista Medical (Canada)	•										
Brewer Science		•	•								
Drop Sense (Spain)					•						
Electrozyme						•					
Flexpoint	•		•							•	
GSI Technologies					•						
Interlink Electronics	•										
ISORG (France)							•				
MC10						•					
Nikkoia (France)							•				
Peratech (UK)	•										
Piezotech (France)					•			•	•		
Plastic Electronics GmbH (Austria)	•										
PolyIC (Germany)	•										
PST (So. Africa)		•									
Sensitronics	•										
Spec Sensors				•							
Synkera				•							
Tactonic	•										
Tekscan	•										
Temptime		•									
T-Inc	•										

Not exhaustive Alphabetical order

TEKSCAN

- Location: Norwood MA
- Introduced: Early 1990's
- Brand name: Flexiforce
- Parameter sensed: Force, rate of change of force, relative change in force, touch, contact
- Construction: Two layers of polyester substrates with printing of layer of conductive silver (connections) and layer of pressure sensitive ink attached by an adhesive bond
- Applications include sports/fitness consumer, medical devices, robotics, control and diagnostic

ISORG

- Location: Grenoble, France
- Parameter sensed: imaging sensor
- Visible/NIR up to 900 nm.
- Low dark current
- Large dynamic range
- PET plastic foil: 32 x 32 cm. moving to 60 x 60 cm.; 5 x 5 cm. device
- PET backplane
- Applications: whole -hand fingerprint analysis/biometrics, medical x-ray imaging ,IoT inventory analysis
- CEA-Leti spinoff in 2009
- Received 28M Euro infusion

HOLOGENIX / CELLIANT

- Founded: 2017 in LA
- Works on principle of certain minerals plus 88 trace elements react to heat and emit full spectrum IR energy
- Proprietary minerals added to liquid phase of the polymeric thread extrusion process
- Currently EU Class 1 medical device
- FDA classified as medical device with no class determination
- Applications include apparel, medical/wound care, diabetes
- Products include T-shirts (UnderArmor), socks, sheets (Pure Care) Mattresses (Bear)

WEARABLES: THE FUTURE OF MEDTECH*

- Definition:
 - On-body vs. off-body
 - Apple watch vs. Sensoria T-Shirt
- Objective: provide "transparent computing"...Davide Vigano/CEO Sensoria
- Forcing Factors
 - "the pandemic transformed healthcare"...Alfred Poor, Editor, Heath Tech Insider
 - Rate of adoption acerated by
 - Aging-in-place
 - Adoption of telemedicine/telehealth
 - Recent developments in AI
- Applications...remote and on-person monitoring
 - Post-procedure
 - Physical therapy
 - Chronic illness
- Technical Issues...Hardware
 - Hybrid/"pod" approach for sensing, computation, communication, power

MARKETING

Packaging/interfacing sensor platforms to systems

*key take-aways from the WEAR Conference...June 7-9, 2022 Scottsdale, AZ

WEARABLES:THE FUTURE OFMEDTECH*(CONT.)

- Market Growth (Research and Markets Report: "Global Smart Wearables" Feb. 2023)
 - \$20.64 B(2022)
 - \$34.39B(2027)
 - CAGR=10.2%
- Technical Issues...Software/Data
 - What needs to be measured to impact decisions
 - How is it displayed to optimize efficacy
- Barriers to Commercialization
 - Data security
 - Regulation
 - CDC billing code approval
 - Broadband and smart phone access
- Companies to Watch
 - Butler Technologies...Smart T-Shirt
 - Hologenix...Smart power T-shirt (Under Armor)
 - Liquid Wire...sensors and connectivity solutions
 - Nextiles...smart fabric sensors
 - Sensoria...Smart socks, T-Shirts and bras

ROGER GRACE ASSOCIATES

UNIVERSITIES / RESEARCH INSTITUTES ACTIVITIES

ROGER GRACE ASSOCIATE

COUNS

R&D LANDSCAPE OVERVIEW

- Considerable R&D activity in sensor development (and their integration) into systems a.k.a. products in many research institutes and universities: Asia
 - ITRI-Taiwan
 - Sungkyonk wan University-Korea
- Europe
 - CEA-Leti
 France
 - CSEM Switzerland
 - Fraunhofer Europe (67 with approx. 10 involved in P/F Electronics including Chemnitz/ENAS, Munich/EMFT, Dresden/IPMS and Berlin/IZM)))
 - IMEC/ Holst Netherlands
 - VTT Finland
 - INESC
 Portugal
- US
 - Arizona State University
 Northeastern University
 Stanford
 UC Berkeley
 UC San Diego
 UC Irvine
 Western Michigan University
 Ohio State
 N.C. State
 ROGER GRACE ASSOCIATE

PRINTOCENT CLUSTER

- Location: Oulu, Finland
- Started: 2008 <u>www.Printocent.fi</u>
- Facilities (shared):
 - VTT
 - OUAS
 - University of Oulu
- Funding: 40M Euros (EU and Regional)
- Turnover of companies (2019): 25M Euros
- Total number of companies in cluster: 40
- Number of companies catalyzed: 30
- Number of jobs created: 300
- Purpose: Provide open access to companies for scale-up of manufacturing capabilities for the creation and manufacturing of "printed intelligence"
- Created a six-part series of webinars in mid-2020 on "Printed Intelligence"
- Offers free…"Handbook of Printed Intelligence" as pdf_download

MARKETING

COUNS

US PUBLIC / PRIVATE CONSORTIA

• AFFOA (Advanced Functional Fabrics of America) <u>www.affoa.org</u>.

- Location: Cambridge, MA (MIT)
- Founded in 2016
- Funding:\$75M (US DOD) with grants from governments, industry and academia totaling approximately \$325M
- Focus: Enabling manufacturing
- NEXT FLEX / SEMI <u>www.nextflex.org</u>.
 - Location: San Jose, CA
 - Founded in 2015
 - Funding:\$75M (US DOD) with grants from governments, industry and academia totaling approximately \$325M

MARKETING

- Focus: Enabling manufacturing (flexible hybrid approach)

INTEGRATION CHALLENGES

- The future success will reside in the ability of suppliers to judiciously select the required functionalities of the individual circuit functions and determine the optimum format/platform for their realization in specific applications
- Monolithic vs. heterogeneous vs. hybrid integration strategies...TBD
- Connectivity of individual devices
- Packaging/encapsulation of total solution
- Reliability issues...especially with wearables continuous washing/drying
- Modelling challenges
- Determination of the manufacturing method to minimize cost, maximize functionality and maximize reliability e.g. Flextronics, Jabil
- Major efforts underway in EU to address this issue...also with NextFlex in the US

CRITICAL SUCCESS FACTORS

- Ability to demonstrate value- add to critical applications
- Ability of to demonstrate equal- to -better performance vs. competitive approaches...and my market research say "yes"
- Growth of the wearables market uncertainty
- Ability of non-flexible/non-organic functional solutions to accommodate application requirements
- Entry of additional players (with big R&D Budgets) to help commercialize the technology
- Adoption of standard processes based on the broad availability of materials
- Continuation of robust funding of research activities by governments ...e.g. Next Flex (US), AFFOA (US), PrintoCent (Finland)
- Ability of existing sensor companies to adopt a paradigm shift from a electromechanical technology mindset to that of a materials one
- Continuation of over-hyping of flexible electronics opportunities
- BOTTOM LINE....I believe there is lots of uncertainty at this time..."as goes flexible hybrid electronics so goes its sensors"...R. Grace

RKETING

MONITIZING

- FACT...Its hard to make money just providing sensors (J. Bryzek)
- Need to add value...look for system solutions
- Actively seek partnerships/collaborations ... e.g. PST / ThinFilm (licensing)
- Possible acquisition strategy
- Ride the wave of the printed electronics (PE) growth
- Find and get designed into applications that can exploit the unique benefits of these sensor technologies and address unmet market needs especially in wearables

SUMMARY / CONCLUSIONS

• Limited:

- number of success stories to date
- number of commercial companies in volume production
- number of parameters currently being measured:
 - Pressure / force / touch
 - Gas analyses
 - Temperature
 - Humidity
- Solid growth foreseen by several market research groups
 - Printed: CAGR (average) =6% (2021-2026)?
 - Functional Fabric: CAGR (average)= 28% (2020-2027)
- Growth forcing functions
 - Replacement of existing solutions...lower cost, enhanced functionality
 - Creation of new solutions based on enabling nature of P/F/S and FF
- Will require a significant marketing/applications pull vs. technology push
- A "systems solution" approach will be required...not just a sensor!
- Wearables for military, sport fitness, disposables, package tracking, ehealthcare and environmental monitoring expected to propel market
- Ability to scale to R-2-R for large volume/low cost application opportunities

SUMMARY / CONCLUSIONS (cont.)

- Low cost CAPEX makes commercialization by many organizations possible
- I believe that the success of Printed/Flexible/Stretchable and Functional Fabric/E-Textile sensors will weigh heavily on the success of flexible hybrid electronics (FHE) ... the future will be interesting

MARKETING

COUNS

UPCOMING EVENTS OF NOTE

- IEEE Sensors Council-FLEPS (<u>www.ieee-fleps.org</u>)... Boston/Northeastern University...July 9-12, 2023...connect with Prof. Ravinder Dahiya for details
- Semicon West/NextFlex (<u>www.nextflex.org</u>)...San Francisco, CA...July 11-13, 2023

MARKETING

• WEAR (<u>www.wear.com</u>) San Diego...December 4-6, 2023

FURTHER READING

- Articles by Roger Grace on P/F/S and E-Textile/Smart Fabric sensors have appeared in:
 - Electronic Products-June, 2015 Electronic Products; July 2015
 - Sensors Magazine Newsletter-September 25, 2015
 - Sensor Magazin (Germany)-November 2015
 - Commercial Micromanufacturing Magazine (UK)-December 2015
 - Commercial Micromanufacturing Magazine (UK)-May/June 2018

...and all available on the Roger Grace Associates website <u>www.rgrace.com</u> in the drop down tab..."Articles"

Since this was a shortened presentation due to time constraints...

the entire presentation will be available to attendees by kindly requesting it via email to me at ...rgrace@rgrace.com

Please come by the Roger Grace Associates booth #324 and enter to win

a smart T-shirt and Smart socks courtesy of Hologenix