

♀ June 20-22, 2023 ⊞ Santa Clara, CA

www.sensorsconverge.com #SensorsConverge

Interoperability & Standards Smart Sensor and Actuator Standards and Interoperability for IoT, IIoT & CPS

Eugene Song, PhD Electronics Engineer of the Internet of Things (IoT) Devices and Infrastructure Group National Institute of Standards and Technology

Smart Sensor & Actuator Standards and Interoperability for IoT/IIoT/CPS

- 1. Sensors & Actuators Are Used Everywhere in IoT/IIoT/CPS Applications
- 2. What Are IoT/IIoT/CPS Requirements for Sensors and Actuators?
- 3. What Are Smart Sensors and Actuators?
- 4. IEEE 1451 Interface Standards for Smart Sensors & Actuators, and Networks
- 5. Key Takeaways

1. Sensors & Actuators Are Used Everywhere

Aerospace

Automobile

Global Warming & Environmental Monitoring

Health Care

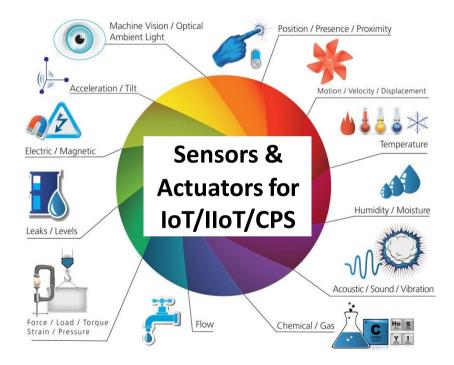
Industrial **Automation/Manufacturing**

Smart Grid

#SensorsConverge

Sensors and Actuators **Are Used Everywhere In** IoT/IIoT/CPS Applications

Smart Home and Building



2. What Are IoT/IIoT/CPS Requirements for Sensors & Actuators?

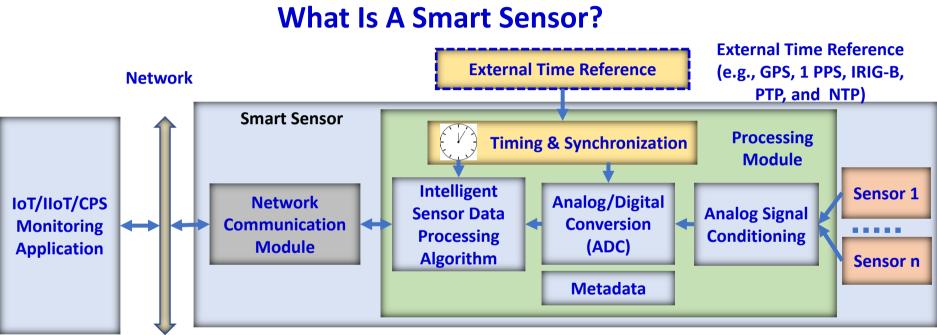
IoT/IIoT/CPS Requirements for Sensors and Actuators:

- Sensing/actuation capability
- Uniquely and globally identified
- Internet or network access
- Security and Privacy
- Time-aware & synchronization
- Location-awareness
- Self-description/identification
- Edge computing with AI
- Network communication protocols and interfaces to achieve interoperability



2. What Are IoT/IIoT/CPS Requirements for Sensors & Actuators? (Cont'd)

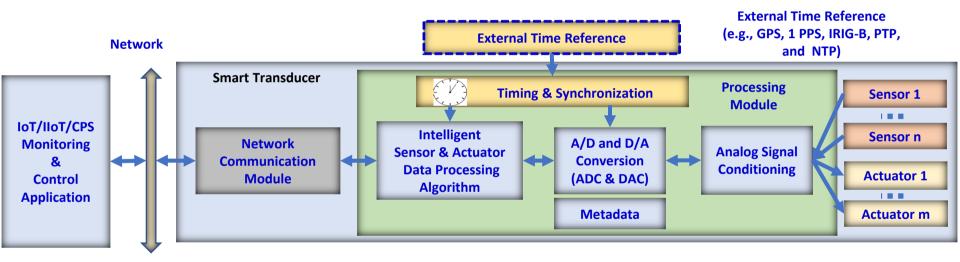
Sensors and Actuators:


- Should be smart and intelligent enough using edge computing and AI
- Should adopt various standards:
 - Global identity
 - Security
 - Time synchronization
 - Network communication protocols and interfaces to achieve interoperability and plug & play.

https://www.industryweek.com/operations/continu #Seus-improvement/article/21170962/dumb-smartor-intelligent-whats-really-relevant-in-the-factory

3. What Are Smart Sensors and Actuators?

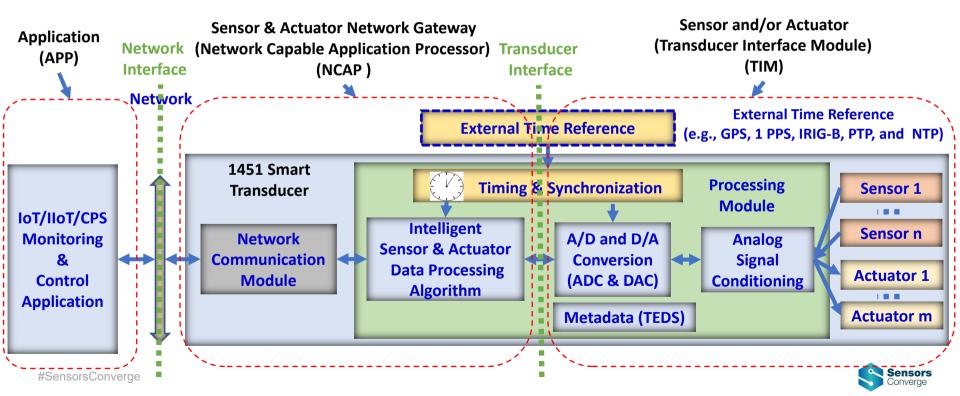
Smart Sensor Capabilities:


- Sensing
- Signal/Data Processing & Conversion
- Time & Synchronization
- Metadata
- Network Communication

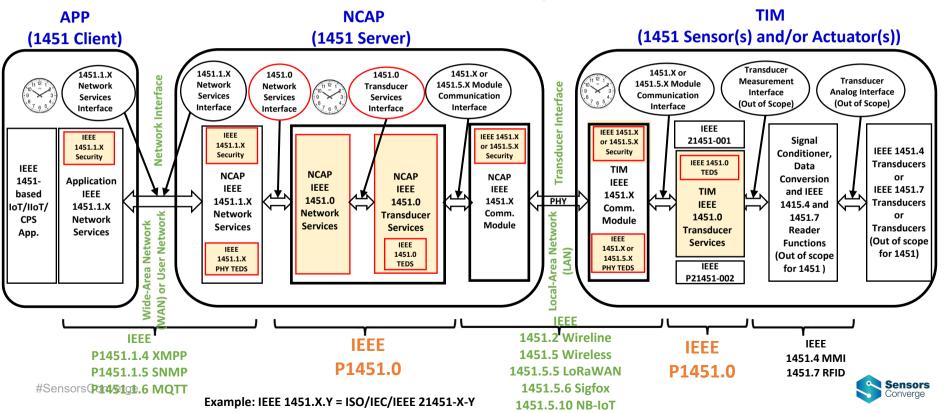
#SensorsConverge

3. What Are Smart Sensors and Actuators? (Cont'd)

What Is A Smart Transducer (Sensors and/or Actuators)?

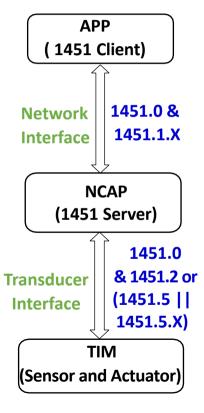

Smart Transducer (Sensor and/or Actuator) Capabilities:

- Sensing and/or Actuation
- Signal/Data Processing & Conversion
- Time & Synchronization
- Metadata
- Network Communication via Network Interface



#SensorsConverge

IEEE 1451-based Smart Sensor Networks



Reference Architecture for the Family of IEEE 1451 Standards

IEEE P1451.0 Standard Defines:

- Three devices: APP, NCAP, and TIM
- Network services command and reply messages between APPs and NCAPs
- Transducer services command and reply messages between NCAPs and TIMs
- Universal Unique Identification (UUID) for appId, ncapId, and timId
- Transducer Electronic Data Sheet (TEDS)
- Security foe WAN, LAN & WLAN
- Time Synchronization for WAN, LAN & WLAN

	Draft Standard for a Smart Transducer Interface for Sensors and Actuators-Common Functions, Communication Protocols, and Transducer Electronic Data Sheet (TEDS) Formats
1	P1451.0™/D6
2	Draft Standard for a Smart Transducer
3	
4	Common Functions, Communication
5	Protocols, and Transducer Electronic
6	Data Sheet (TEDS) Formats
7 8	Sponsor
9 10	Technical Committee on Sensor Technology of the
11 12	IEEE Instrumentation and Measurement Society
13 14	Approved <date approved=""></date>
15 16	IEEE-SA Standards Board
17 18	Copyright © 2023 by The Institute of Electrical and Electronics Engineers, Inc.
19 20	Three Park Avenue New York, New York 10016-5997, USA
21	All rights reserved.
22 23 24 25 26 27 28 29 30 31 32 33 34	This document is an unapproved draft of a proposed IEEE Standard. As such, this document is subject to change. USE AT VOIR OWN RSIX: IEEE copyright statements SHALL NOT BE REMOVED from draft or approved IEEE standards, or modified in any way. Because this is an unapproved IEEE standards for officers from each IEEE Standards Working Group or Committee to reproduce the draft document developed by that Working Group for pappose of international transductation consideration. IEEE Standards whole or in part 15 standards dovelopment or generational attachand transformation with the international standardization consideration (Idea) <u>international attachand</u> that consideration international whole or in part by another standards development organization, permission, IEEE Standards Department will require a copy of the standard development organization document, in whole or in part, by another standards development organization documents, in ES standards Department (<u>international</u> the standard development organization document the IEEE Standards Department will associate the standard development organization document the of IEEE content. Other entities seeking permission to reproduce this document, in whole or in part, must also obtain permission from the IEEE Standards Department will approve the Standard development organization to permission from the IEEE Standards Department.
35 36 37	IEEE Standards Department 445 Hoes Lanc Piscatuway, NI 08854, USA
38	

Universal Unique Identification (UUID)

- The UUID establishes uniqueness by assembling an identification number comprising of manufacturer location and specific information, year and time of manufacture.
- UUID for APP (appId), NCAP (ncapId) and TIM (timId)

struct UUID {//
OctetArray ged
OctetArray mar
UInt16 yea
OctetArray tin
};

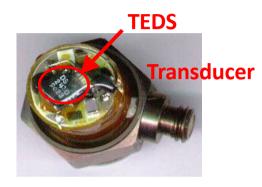
{// 16 bytes
geolocation;
manufacturer;
year;
time;

(128 bits)
// 6 bytes (48 bits)
// 3 bytes (24 bits)
// 2 bytes (16 bits)
// 5 bytes (40 Bits)

#SensorsConverge

- Transducer Electronic Datasheet (TEDS): a memory device attached to the transducer in a TIM, stores transducer identification, measurement range, calibration, location, user and manufacture-related information.
- Self-description and Self-identification

IEEE P1451.0 TEDS Classification:

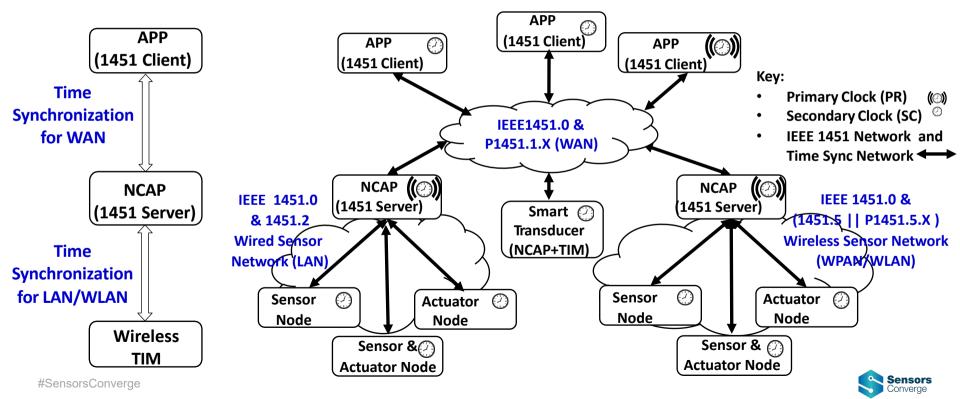

Meta TEDS	
TransducerChannel TEDS	l
User's transducer name TEDS	
PHY TEDS	Į
Calibration TEDS	
Frequency Response TEDS	
Transfer Function TEDS	
Text based TEDS	H
End user application specific TEDS	
Manufacturer-defined TEDS]]

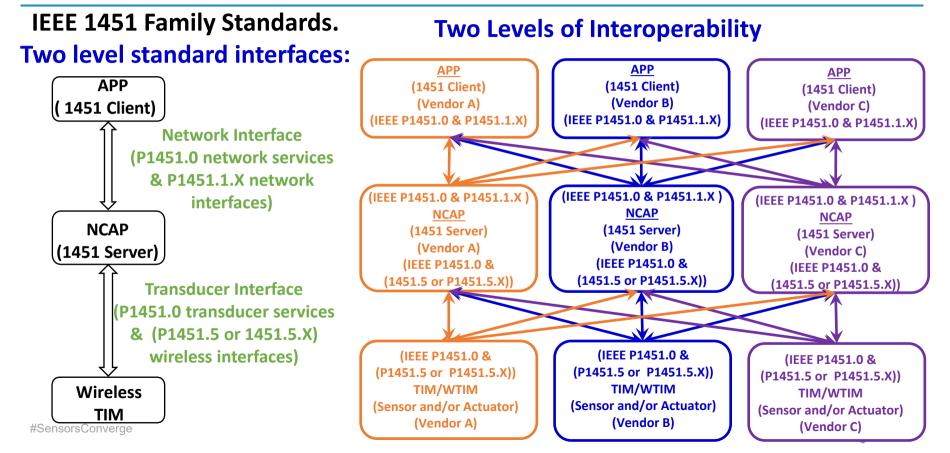
#SensorsConverge

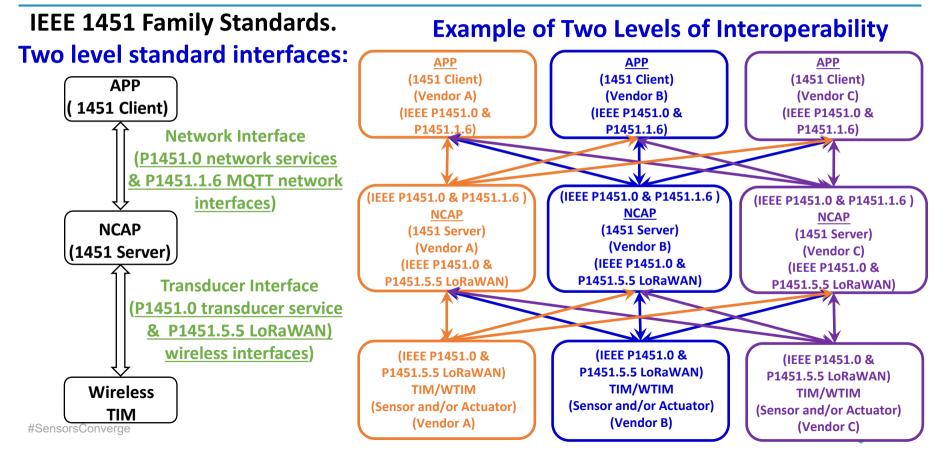
Mandatory

Optional

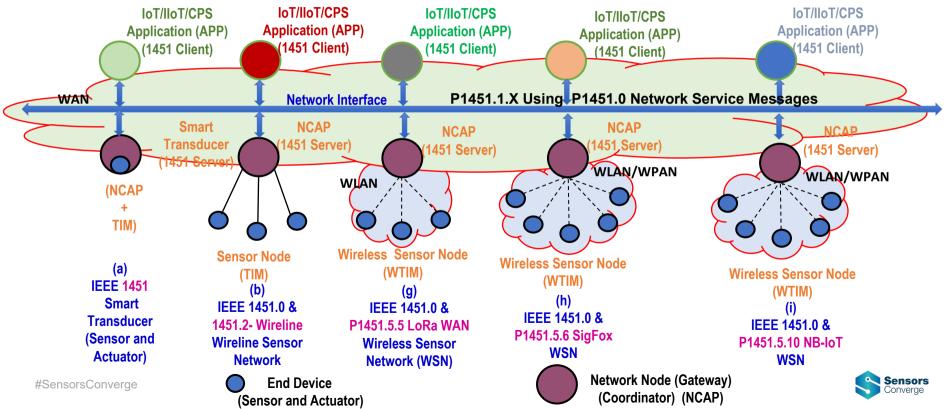
Meta-Identification TEDS TransducerChannel Identification TEDS Calibration-Identification TEDS Commands TEDS Location and Title TEDS Geographic Location TEDS Security TEDS Time Synchronization TEDS

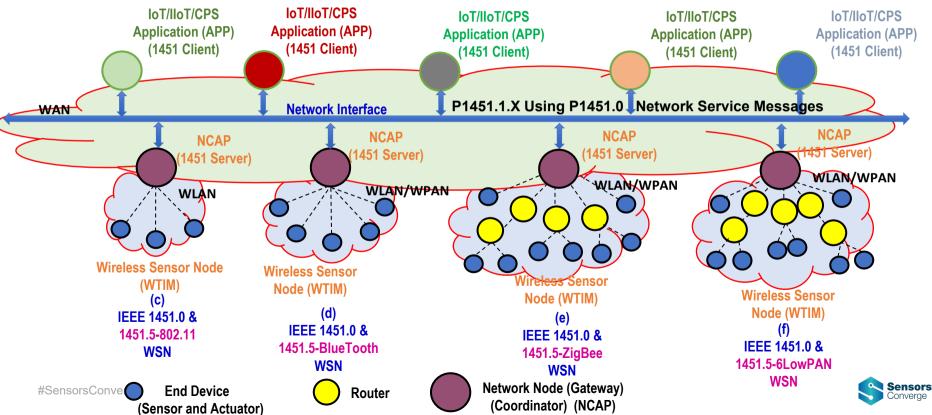



	xml version="1.0" encoding="UTF-8"? <xs:schema< th=""></xs:schema<>								
	<pre>xmlns:stml="http://grouper.ieee.org/groups/1451/0/1451HTTPAPI" xmlns:xs="http://www.w3.org/2001/XMLSchema"</pre>								
	<pre>xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="http://grouper.ieee.org/groups/1451/0/1451HTTPAPI"</pre>								
	elementFormDefault="qualified" attributeFormDefault="unqualified">								
	<pre><rpre></rpre></pre>								
Z.	<xs:element name="MetaIdTEDShataBlock"></xs:element>								
	<xs:annotation></xs:annotation>								
	<pre><xs:documentation>This is the schema for the contents of the</xs:documentation></pre>								
	data block for the Meta Identification TEDS								
	<xs:complextype></xs:complextype>								
	<xs:sequence></xs:sequence>								
	<pre><xs:element minoccurs="0" name="manufacturerId" type="stml:_String"></xs:element></pre>								
	<pre><minocedurs="0"></minocedurs="0"> <xs:element <="" name="ModelNo" pre="" type="stml: String"></xs:element></pre>								
	minOccurs="0"/>								
	<pre></pre>								
	minOccurs="0"/>								
	<pre><xs:element <="" name="serialNo" pre="" type="stml: String"></xs:element></pre>								
	minOccurs="0"/>								
	<pre><xs:element <="" name="dateCode" pre="" type="stml:_String"></xs:element></pre>								
	minOccurs="0"/>								
	<pre></pre>								
	minOccurs="0"/> 								
	Converge								


Security & Security TEDS for IEEE 1451.0-based Sensor Networks

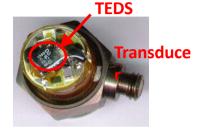
APP APP APP (1451 Client) **Security Policy:** (1451 Client) 1451 Client) Encryption **Security** Authentication IEEE 1451.0 & 1451.1.X for WAN **WAN Security** Authorization • Smart Smart Transducer **Define Six Levels of Security:** NCAP Transducer NCAP (NCAP+TIM) (NCAP+TIM) (1451 Server) (1451 Server) N: none A: Encry **TEEE 1451.0 Security for** B: Authen & (1451.5 | |1451.5.X) **WLAN** WLAN Security C: Encry + Authen Wireless TIM D: Authen + Author Wireless TIM Wireless (Sensor) Wireless TIM (Actuator) E: Encry + Authen + Author TIM (Sensor & Actuator) Sensors #SensorsConverge Converge


Time Synchronization and TimeSync TEDS for IEEE 1451.0-based Sensor Networks



Deployment of IEEE 1451-based Smart Sensor Networks for IoT/IIoT/CPS Applications

Deployment of IEEE 1451-based Smart Sensor Networks for IoT/IIoT/CPS Applications


Benefits of IEEE P1451.0 to Manufacturers and End Users

Benefits of IEEE 1451 :

- Sensor data interoperability (network and sensor levels) and plug-and-play
- Global Identification using UUID
- Self-description & self-identification of sensors or actuators based on TEDS & UUID
- Security for WAN (network interface), Wireless LAN (WLAN) (transducer interface)
- Time synchronization for WAN, LAN & WLAN
- Long-term self-documentation based on TEDS
- Reduce human errors (no need to enter data manually)
- Ease field installation, upgrade, and maintenance based on TEDS, Plug & Play
- Reduce the total–life cycle costs of sensor networks

...

.

5. Key Takeaways

IEEE 1451 Standards Support:

- ✓ UUID for APP, NCAP, and TIM
- ✓ TEDS (Metadata)
- ✓ Network services (messages) and transducer services (messages)
- ✓ Security for WAN, and WLAN
- ✓ Time synchronization for WAN, and LAN & WLAN
- \checkmark Sensing and actuation functions for IoT, IIoT and CPS
- ✓ Wireline and wireless sensor networks for IoT/IIoT/CPS
- ✓ Standards-based sensor data interoperability and plug & play

A strong business case for using IEEE 1451 standards:

- ✓ Reduce human errors by using TEDS
- Improve (enhance) and maintain sensor measurement accuracy by using calibration TEDS data
- ✓ Ease field installation, upgrade, and maintenance (by plug & play)
- Reduce the total life-cycle costs of sensor networks

Questions?

Contact Info:

Eugene Song Ph.D. Electronics Engineer Chair of IEEE P1451.0 WG email: <u>eugene.song@nist.gov</u>

Kang Lee Chair of IEEE I&M TC9, IEEE 1451 Family Standards email: <u>kang.lee@nist.gov</u>

Backup Slides

#SensorsConverge

What Is Interoperability?

Interoperability (according to IEEE):

The ability of two or more systems or components to exchange information and to use the information that has been exchanged.

Interoperability :

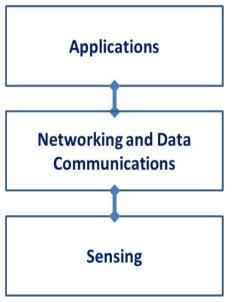
The ability of two or more systems to exchange information and to use the information that has been exchanged <u>through a standard communication protocol</u> <u>in order to achieve the specific functions or goals.</u>

What Are Challenges of Sensors & Actuators in IoT/IIoT/CPS Applications?

- Various wireline and wireless connectivity
- Wireless network performances (e.g., bandwidth, latency, packet loss)
- Spectrum coverage, sharing, and interference
- Cybersecurity and privacy
- Scalability
- Power consumption/energy efficiency
- Time synchronization
- Standardization & interoperability

What Are Challenges of Sensors & Actuators in IoT/IIoT/CPS Applications?

Standardization & Interoperability


- 1. Heterogeneity of standards and protocols
- 2. The lack of standard implementation
 - Limited resources to implement standards
 - Lack of implementing standards for some emerging technologies and new applications
- 3. Lack of standards harmonization
- 4. Interoperability test and plugfest
- 5. Lack of fundamental methodologies and software tools
 - Interoperability modeling
 - Interoperability measurement and assessment

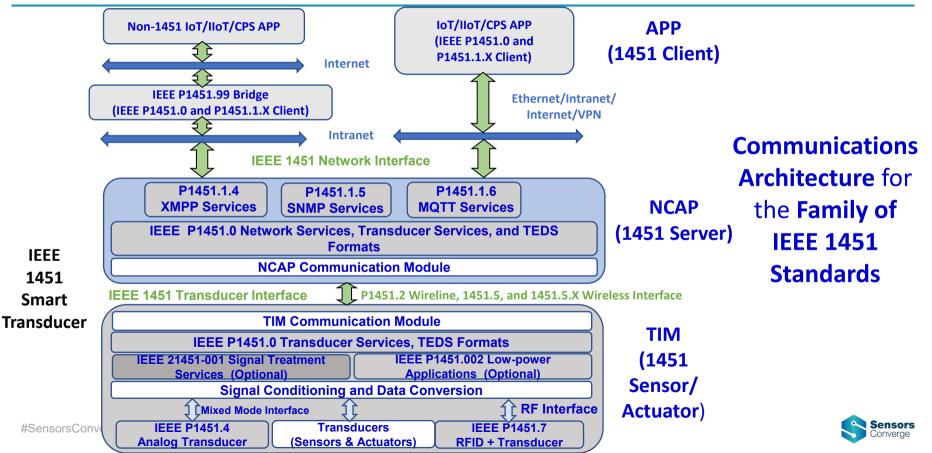
Sensors & Actuators Are Used Everywhere

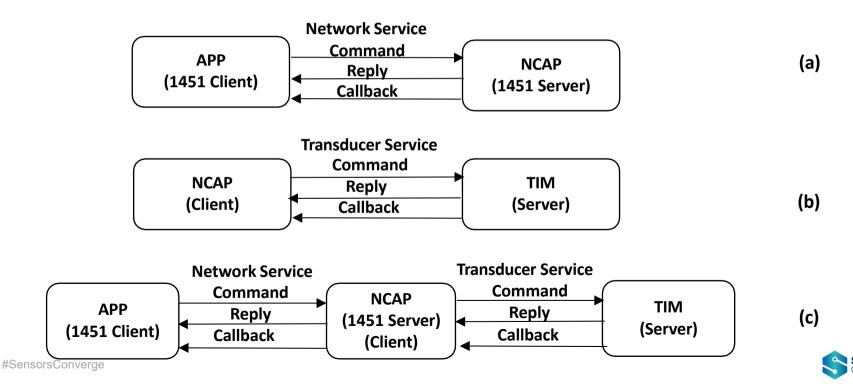
Internet of Things (IoT) is a network that connects uniquely identifiable "Things" to the Internet. (IEEE)

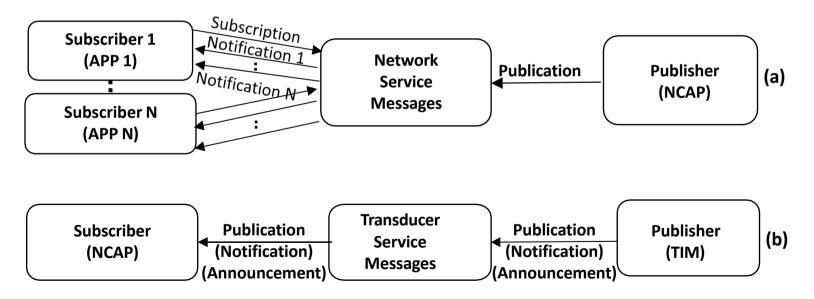

IEEE IoT Architecture

IoT vs CPS:

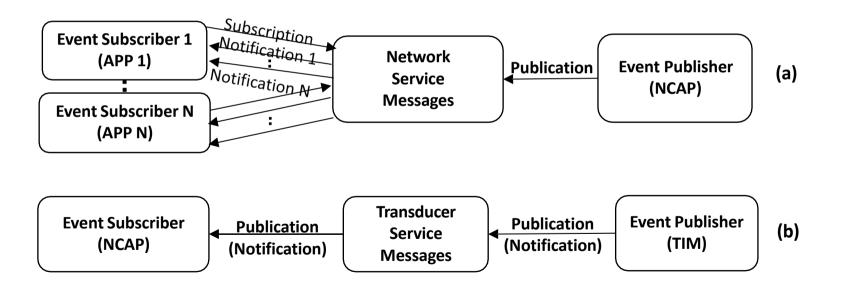
- IoT is mainly concerned about ^{phy} unique identification, connecting with the Internet and accessibility of "things."
- CPS is mainly concerned about the collaborative activities between cyber and physical system through sensing and actuation
- CPS uses IoT systems to achieve the collaborative work of the distributed systems.


Cyber-physical systems (CPS) are smart systems that include engineered interacting networks of physical and computational components. (NIST) **NIST CPS Conceptual Model**

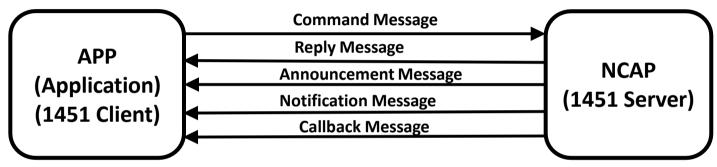

Source https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition _Internet_of_Things_Revision1_27MAY15.pdf



IEEE 1451.0 Client-Server Communication Model



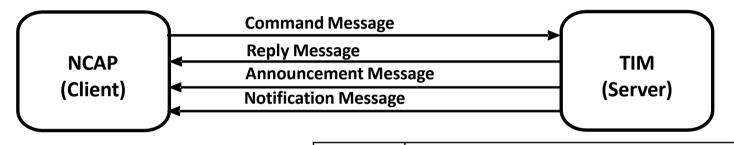
IEEE 1451.0 Publish-Subscribe Communication Model



IEEE 1451.0 Publish-Subscribe Communication Model

IEEE P1451.0 Network Services & APIs

Network Service Type Name	Network Service Type			
(Meaning)	(Enumeration)			
Reserved	0			
Discovery services	1			
Transducer access services	2			
TEDS access services	3			
Event notification services	4			


Message Type	Message Type
Name (Meaning)	(Enumeration)
Reserved	0
Command	1
Reply	2
Announcement	3
Notification	4
Callback	5

		1-Octet								
	7	6	5	4	3	2	1	0		
	Netwo	Network Service Type (1,2,3, and 4)								
Message	Netwo	Network Service ID (1,2,3, N))								
Header	Messa	Message Type (1, 2, 3, 4, 5)								
Header	Lengt	Length (most significant octet)								
	Lengt	Length (least significant octet)								
Message	Messa	age Bo	dy							
Body										

#SensorsConverge

IEEE P1451.0 Transducer Services & APIs

XdcrMsgType			
(Enumeration)			
1			
2			
3			
4			
5-127			
128-255			

Message	1-Octet								
Section	7	6	5	4	3	2	1	0	
Message	Message Command class Id (1)								
Header	Comm	Command function Id							
	Transd	Transducer Message type							
	Length	Length (most significant octet)							
	Length	Length (least significant octet)							
Message		D: timId							
Body	Destination or Source TransducerChannel Number								
	· ·	(UInt16)							
		Message type-dependent information. (Message							
	clas	class, function, msg type-dependent octets)							

#SensorsConverge