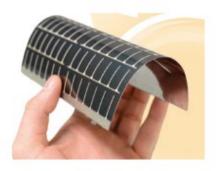
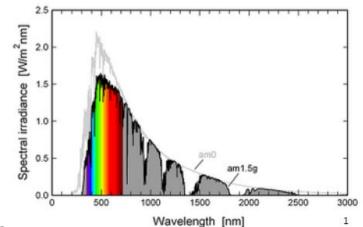


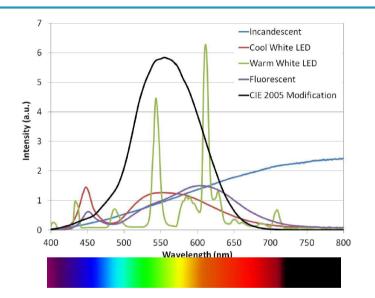
Solar Power for Indoor Systems


June 20, 2023 | Santa Clara, CA Brad Scandrett, VP of Engineering, PowerFilm, Inc

Components of an EH System

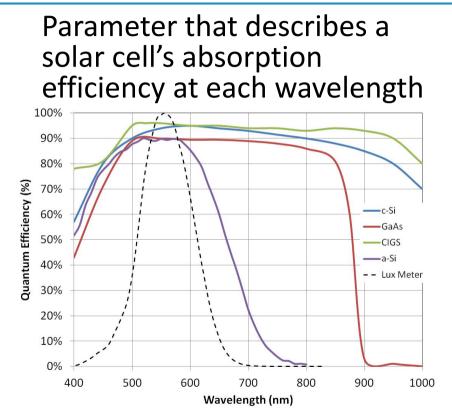
Choosing the Right Solar for an EH System

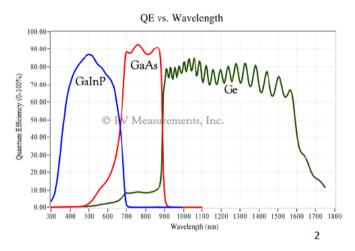

What's commercially available? How does it work?


SOLAR

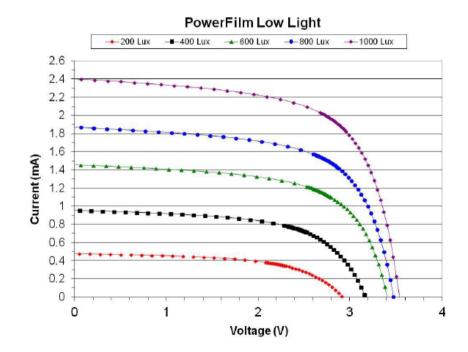
Light Energy Spectrum

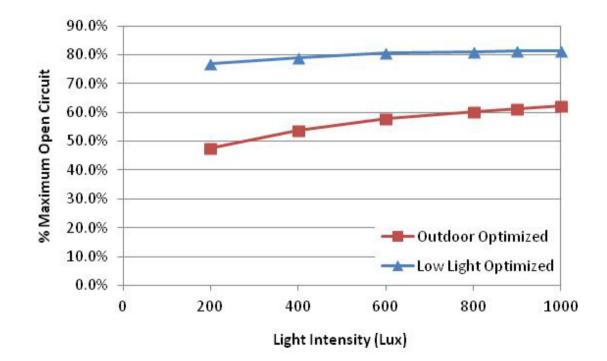
Solar efficiencies quoted under light spectrum of AM1.5 at 1000W/m^2 and 25°C




Spectrum of energy efficient light sources limited to visual range

Quantum Efficiency

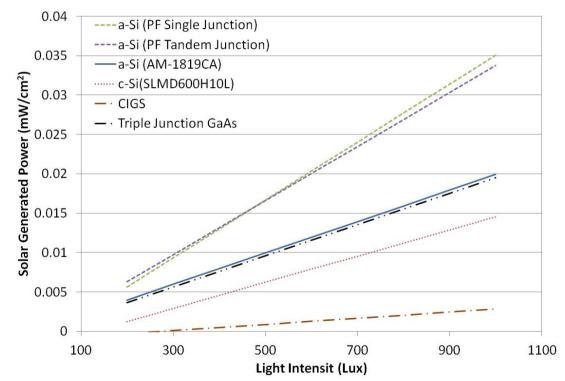

Cell matching will limit indoor performance of multijunction cells


Solar Cell - IV Curve

- Solar cells are diodes
- Collected power depends on resistance across cell
- Current changes proportional to light intensity
- Voltage depends on a cell's shunt resistance

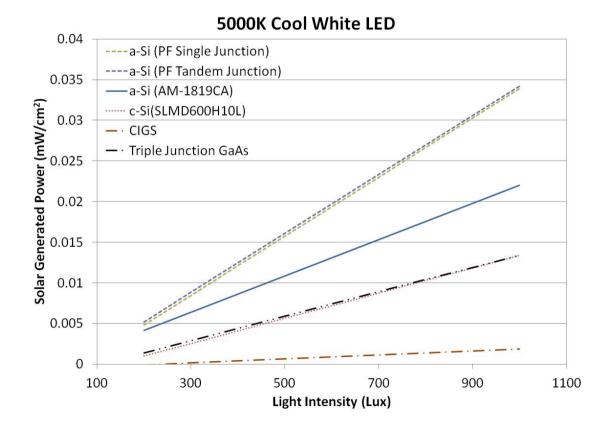
Solar Voc vs Light Intensity

Energy Harvesting Solar Power Sources


	a-Si	c-Si	GaAs	CIGS
Weight	Light	Moderate	Light to Moderate	Light to Moderate
Area	Moderate	Low	Very Low	Moderate
Indoor Performance	High	Low to Moderate	Low to High	Very Low
Durability	Excellent	Poor	Good	Moderate
Flexibility/Conformability	Excellent	Poor	Poor to Good	Good
Thickness	Thin	Thick	Thin to Thick	Thin to Thick
Cost	Moderate	Low	High	Moderate
Shade Tolerance	Excellent	Poor	Poor	Poor to Moderate
Manufacturing	Moderate	Moderate to Complex	Complex	Moderate

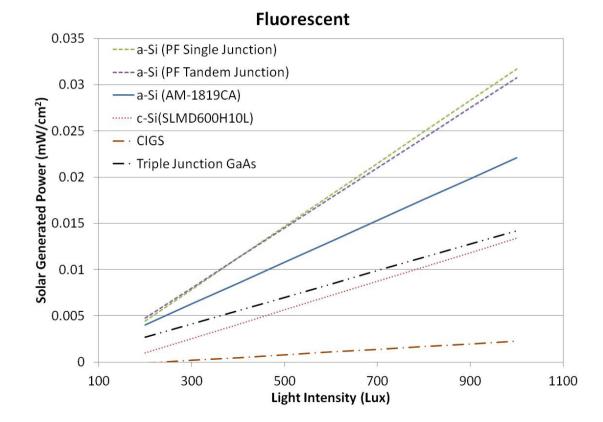
Light Source 3000K LED

3000K Warm White LED

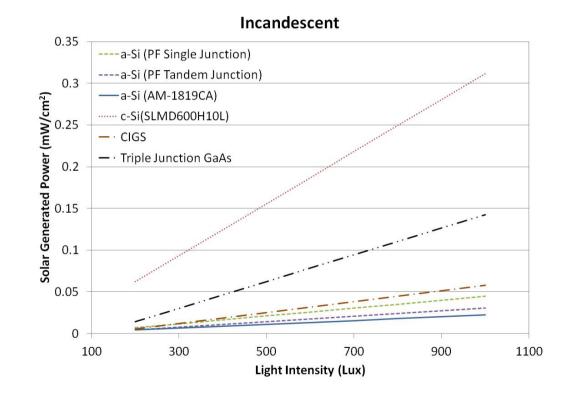

#SensorsConverge

6

Light Source 5000K LED



6


Light Source Fluorescent

6

Light Source Incandescent

- Rated efficiency has no correlation with indoor performance Quantum efficiency and leakage do
- Light source spectrum has a major impact
- a-Si collects the most power in energy efficient indoor lighting

	Rated	Current Density (mA/cm ²)) at 1000Lux
Technology	Efficiency %	Fluorescent	LED	Incandescent
CIGS	8.5%	0.002	0.003	0.058
Si	18.0%	0.013	0.015	0.310
a-Si	6.0%	0.032	0.035	0.045
Triple				
Junction				
GaAs	30.0%	0.014	0.020	0.142

Estimating Solar Requirements

- Energy harvester efficiency (90%, high solar voltage improves EH IC efficiency)
- Desired days to recharge from worst case given by safety factor (5 days)
- Illumination (12 hours/day)

Solar Generation Capability

= <u>
Capacity Required</u> Days to Recharge + Daily Power Consumption

Illumination Time

 Illumination Intensity – PowerFilm a-Si Solar Module LL2.4-75-200, 0.29mW @ 200Lux, 1.91mW @ 1000Lux

				Solar
Daily Power	Capacity	Days to	Illumination	Generation
Consumption	Required	Fully	Time	Capability
(mWh)	(mWh)	Recharge	(hours/day)	(mW)
	15.7	5	12	0.44
1.57			12	0.15
	69	5	12	1.92
6.9			12	0.64
Charger efficie	ency is 90%			

OPV Considerations

- Organic Solar Modules or Organic Photovoltaics (OPV) Considerations
- High temperature degradation.
 - High temperatures ($T \gg 300$ K), mechanical stress, or contact with water can, in principle be overcome by engineering solutions like encapsulation or active cooling(13)
- UV Degradation;
 - UV light is well known to cause degradation in OSCs, photodegradation is typically studied with UV cutoff filters, which have a typical cutoff wavelength of around 380 nm. Using a cutoff filter leads to lower light-harvesting potential of the OSCs and hence a loss in maximum current and performance of the devices.
- Moisture/Humidity Degradation;
 - There are no significant changes in the J–V characteristics of unencapsulated P3HT:PCBM cells using PMA as HTL during the course of 4 h in damp heat (85 °C/85% RH), while PEDOT:PSS-based devices are completely nonfunctional after such treatment.(14)
 - With regard to the thermal stability, the state-of-the-art device based on a PBDBT:ITIC blend with an initial 11.2% PCE achieved a T_{80} lifetime of >250 h after heating at 100 °C in a nitrogen-filled glove box (<u>26</u>).
- Light induced Degradation;
 - Samples that were illuminated with green light degraded linearly with SE*h, reducing their PCE by \approx 15% within 100 SE*h, the samples degraded with blue light were suffering from a burn-in-like degradation behavior, in the beginning, reducing PCE by \approx 50% within 100 SE*h (13)
- Encapsulation Solutions;
 - Glass-encapsulated annealed OPVs show good environmental stability with 4.8% loss in efficiency after 4,736 h and an estimated T_{80} lifetime (80% of the initial power conversion efficiency) of over 20,750 h in the dark under ambient condition and T_{80} lifetime of 1,050 h at 85 °C and 30% relative humidity.

- Solar enables self sustaining sensors indoors and outside
- Rated solar efficiency has no correlation with indoor or low light intensity performance
- a-Si excels at producing power indoors
- a-Si has proven history of endurance in the field
- CIGS low performance/lack of availability
- GaAs can perform indoors, look for Single Junction devices
- OPV's are still in development
- The devil is in the details!

Getting Started

Development kits are a great way to start and available with many different harvesters and radios

Questions??

Do you have systems that you'd like to optimize and power via energy harvesting? PowerFilm can help! We would love to hear about your application and help make your vision a reality. Visit us at **Booth 962** or contact us www.powerfilmsolar.com

- 1. "IoT: Number of Connected Devices Worldwide 2012-2025." Statista, <u>www.statista.com/statistics/471264/iot-number-of-connected-devices-</u> worldwide/.
- 2. "LEDs and Photosynthesis." Berry Gardener, 9 Feb. 2016, www.berrygardener.com/tags/light/.
- 3. https://www.noao.edu/education/QLTkit/ACTIVITY_Documents/Safety/LightLevels_outdoor+indoor.pdf
- 4. https://www2.pvlighthouse.com.au/resources/courses/altermatt/The%20Solar%20Spectrum/The%20global%20standard%20spectrum%20(AM1-5g).aspx
- 5. <u>http://www.pvmeasurements.com/Products/Discontinued-Products/qex7-solar-cell-spectral-response-quantum-efficiency-ipce-measurement-system.html</u>
- 6. Arthur, Battery Types Used in Solar Lighting. LEDWatcher.com. 1/15/16. http://www.ledwatcher.com/battery-types-used-in-portable-and-solar-lighting/ 10/20/2016.
- 7. Zhang, Yin, "Performance Characteristics of Lithium Coin Cells for Use in Wireless Sensing Systems" (2012). All Theses and Dissertations. Paper 3588.
- 8. http://batteryuniversity.com/learn/article/how_to_prolong_lithium_based_batteries
- 9. M. Jensen. "Coin cells and peak current draw". White Paper SWRA349.
- 10. <u>https://www.labdevice.ch/products-1/100ma-range-current-probe/</u>
- 11. Particle. Whitepaper, "Power Management for IoT Devices". (2017). <u>https://www.particle.io/white-papers/power-management-for-iot-devices?sent=true&submissionGuid=5f28f939-95a3-439b-ab68-c1677f6d80da</u>
- 12. Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years https://www.pnas.org/doi/10.1073/pnas.1919769117
- 13. Revealing Photodegradation Pathways of Organic Solar Cells by Spectrally Resolved Accelerated Lifetime Analysis https://onlinelibrary.wiley.com/doi/10.1002/aenm.202202564
- 14. Overcoming Moisture-Induced Degradation in Organic Solar Cells https://onlinelibrary.wiley.com/doi/10.1002/adem.202300595

