
The Best Defense is 
Offensive Programming
June 20–22, 2023 | Santa Clara, CA

#SensorsConverge
Tyler Hoffman
Co-Founder & VP Developer Experience, MemFault



#SensorsConverge

Co-Founder and VP of Developer Experience, 
Memfault

• I love developer tools, primarily for embedded 
engineers

• Previously: Firmware Engineer @ Pebble, FitBit
• I write on Memfault’s Interrupt blog and give talks
• https://interrupt.memfault.com

https://interrupt.memfault.com/


#SensorsConverge



#SensorsConverge

• Pretends like it’s recoverable

• Requires implementation knowledge 

• Often leads to silent failures and 

confusion

• Someone has to eventually deal with 

the error. Maybe your future self.



#SensorsConverge

Not externally 
triggered, don’t 

explicitly handle it!

Could be adversarial, 
handle it gracefully



#1 takeaway
from this talk



#SensorsConverge

1. What is Offensive Programming?

2. Production Usage

3. Examples

4. Best Practices



What is Offensive 
Programming?



#SensorsConverge

Raise errors immediately – and loudly

https://interrupt.memfault.com/blog/asserts-in-embedded-systems

https://interrupt.memfault.com/blog/asserts-in-embedded-systems


#SensorsConverge

Assert in here



#SensorsConverge

Majority of the software stack is in our control



#SensorsConverge

• Infinitely better than documentation

• Asserts provide breadcrumbs (file & line number)

• Raise alarms close to the root issue

• Safest thing to do in undefined state is to reset

• You control the assert handler

• Capture extra data, logs, a coredump. Anything!

Fail fast! – especially during development and testing



#SensorsConverge

Program 
Error

• Invalid 
arguments

• Out-of-order API 
calls

Undefined 
Behavior

• Memory 
corruption

• Security issues

Resource 
Exhaustion

• Malloc failures

• Stack overflow

Performance

• Queues full

• Watchdog timers

Many of these are very difficult to reproduce



Wait a 
minute…
ASSERT?
Liberally?!

Yes. Even in production (most 
of the time)

The problem is that our 
devices are now resetting with 
no debugger attached.

That’s where
Memfault comes in…



Production Usage



#SensorsConverge

Every bug will surface in production

• 1 in 10,000 bugs are real

• Production has the greatest matrix of test 

cases

• Log if assertions aren’t possible in some cases

• Diagnostics need to be collected

Assert 

Coredump

Analyze 

Fix

Deploy 
Update

Offensive Programming + Diagnostics = Quicker Fixes



#SensorsConverge

Diagnostics & monitoring is a 
requirement

✅ Basic telemetry & logging

✅ Proper fault handling

✅ Assert implementation

✅ Some path to receive error data

✅ Devices can firmware update

Memfault SDK

Logs, Metrics, Crashes



#SensorsConverge

• File and line number of the assert

• Expression value (if configured to do so)

• Backtrace of the asserted task

• Arguments and variables within the call stack

• Global and static variable values

• State of all data structures (heap, queues, etc.)

Debugger attached 

or







Offensive Programming 
Examples

With Memfault as your “debugger”



#SensorsConverge

Developer errors → Raise the alarm immediately



#SensorsConverge



#SensorsConverge

Ensure that states happen in order and as expected



#SensorsConverge

For allocations that should never fail

Likely means a memory leak



#SensorsConverge



#SensorsConverge

Track down performance issues using a timeout



#SensorsConverge

Weren’t processing BLE packets fast enough



#SensorsConverge

Fail if mutex not grabbed in reasonable time



#SensorsConverge

Let the software watchdog detect the stall



#SensorsConverge



#SensorsConverge

Many RTOS’s have this built-in now. Double check yours!

https://embeddedartistry.com/blog/2020/05/18/implementing-stack-smashing-protection-for-microcontrollers-and-embedded-artistrys-libc/

https://www.freertos.org/Stacks-and-stack-overflow-checking.html

https://docs.zephyrproject.org/latest/reference/usermode/memory_domain.html#hardware-stack-overflow

https://embeddedartistry.com/blog/2020/05/18/implementing-stack-smashing-protection-for-microcontrollers-and-embedded-artistrys-libc/
https://www.freertos.org/Stacks-and-stack-overflow-checking.html
https://docs.zephyrproject.org/latest/reference/usermode/memory_domain.html#hardware-stack-overflow


#SensorsConverge



Best Practices



#SensorsConverge

Boot loop detection is a must

• You control the assert handler

• Capture extra data, logs, a coredump. Anything!

• Don’t assert on boot

• Count # reboots within time interval

• Boot into safe mode

• Only FWUP, diagnostics pull, and factory reset

https://interrupt.memfault.com/blog/device-firmware-update-cookbook

https://interrupt.memfault.com/blog/device-firmware-update-cookbook


#SensorsConverge

Clean and simple



#SensorsConverge

Internal testing is the best kind of testing

On internal builds:

• Enable more aggressive asserting

• Tighten timeout durations

• Send builds to small groups externally

• Test. Experiment. Try things. Be creative.
- Every Pebble internal firmware build

”Your Pebble 
just reset. 

Please file a 
bug.”



#SensorsConverge

• Don’t play defense against bugs

• Fail fast and capture data

• Test internally as much as possible

• Keep asserts in production

• We at Memfault would love to help



#SensorsConverge

• memfault.com

• twitter.com/memfault

• linkedin.com/company/Memfault

• interrupt.memfault.com

• We’re hiring!

http://memfault.com/Android
http://twitter.com/memfault
http://linkedin.com/company/memfault


Questions?


	The Best Defense is Offensive Programming
	Tyler Hoffman
	Does this look Familiar?
	It’s defensive, but poorly done
	It can be appropriate at times
	Slide Number 6
	Agenda
	What is Offensive Programming?
	Offensive Programming
	Internal Software Modules
	Internal Software Modules
	Reasons to use Assert
	What you should assert on 
	Slide Number 14
	Production Usage
	Production Environments
	Prerequisites for Production
	What to capture on an assert
	Slide Number 19
	Slide Number 20
	Offensive Programming Examples
	Argument Validation
	Argument Validation
	State machine transition errors
	Malloc returns NULL
	Memfault Memory View
	Full Queue
	Resource Depletion – full queue
	Detecting software stalls
	Detecting software stalls
	Detecting software stalls
	Stack Overflow Detection
	Failing even faster: Compile-time errors 
	Best Practices
	Watch out for boot loops
	Build asserts into wrappers
	Debug builds are your friend
	Takeaways
	Thank You!
	Questions?

