


# What Does 5G Do for IoT and Wearable Devices?

Sensors Converge June 22, 2023



# The Promise of 5G

- Higher bandwidth, ultra-reliable, low-latency
- Addresses three key problems for the wireless infrastructure:



Enhanced data throughput – astounding amount of data



Always on – ability for devices to always be connected



**Reduced latency** – enable additional types of solutions (i.e. healthcare, manufacturing and automotive applications)

#### But these are not important for most IoT applications.



# **5G Spectrum Within Three Key Frequency Bands**

Similar to 4G Coverage and capacity

### BELOW 1 GHZ

Low-band spectrum

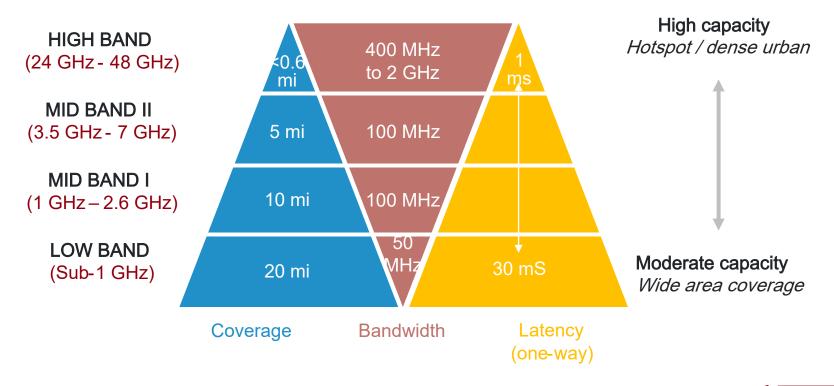
- Will support widespread coverage across urban, suburban and rural areas
- Good in-building coverage
- Peak data speeds up to 100 Mbps
- Used by carriers in the U.S. for LTE
- Bandwidth is nearly depleted

# 1-6 GHZ

Mid-band spectrum

- Good mixture of coverage and capacity benefits.
- Peak data speeds reach as high as 400 Mbps
- Faster speeds and lower latency than lower band
- Does not penetrate buildings
  as well as low-band

### New with 5G


### 6 GHz – 86 GHz

#### High-band spectrum

- Above 6 GHz needed for ultra-high broadband speeds. 28 GHz to 39 GHz bands identified in the USA
- Up to 2 Gbps
- Often referred to as mmWave
- *Major weaknesses:* low coverage area and poor building penetration
- Blocked by walls, windows, cars, trees, rain, or snow



# 5G Coverage, Bandwidth, and Latency





Source: SCTE•ISBE and NCTA and others

### **The 5G Service Classes**

### eMBB

Enhanced mobile broadband

Very high data rates Very High traffic capacity

#### CHARACTERISTIC

High peak data rates | High speed mobility | down to 4 ms of air latency

### USE CASES

Smart phones, tablets, home/enterprise/venues applications, UHD TV (4K and 8K) broadcast, and virtual reality/augmented reality

### CHARACTERISTIC

As low as 1 ms air latency

#### USE CASES

Traffic safety and control, remote surgery, and industrial control



Will support massive IoT deployments

### USE CASES

Smart buildings, logistics, tracking, fleet management, wearable devices, and smart meters

mMTC Massive machine-type communications

Massive number of devices Very low device cost Very low energy consumption **URLLC** Ultra-reliable and lowlatency communications

> Very low latency Ultra high reliability and availability



## **URLLC Service Class - Mostly On-Premise**

| Scenario                                                      | End-to-end<br>latency | Reliability | User<br>experienced<br>data rate | Traffic<br>density | Service<br>area<br>dimension  |
|---------------------------------------------------------------|-----------------------|-------------|----------------------------------|--------------------|-------------------------------|
| Discrete automation –<br>motion control                       | 1 ms                  | 99.9999%    | 1 Mbps up to<br>10 Mbps          | 1 Tbps /km²        | 100 x 100 x<br>30 m           |
| Process automation –<br>remote control                        | 50 ms                 | 99.9999%    | 1 Mbps up to<br>100 Mbps         | 100 Gbps<br>/km²   | 300 x 300 x<br>50 m           |
| Electricity distribution –<br>high voltage                    | 5 ms                  | 99.9999%    | 10 Mbps                          | 100 Gbps<br>/km²   | 200 km<br>along power<br>line |
| Intelligent transport<br>systems – infrastructure<br>backhaul | 10 ms                 | 99.9999%    | 10 Mbps                          | 10 Gbps<br>/km²    | 2 km along<br>a road          |



## **URLLC** Limitations



### **Mostly On-Premise uses**

- No wide area coverage
- Equipment typically installed by the user
- Not for public service



# Latency is one way from transmitter to receiver

- Local termination reduces network latency that is up to 100 mS in 4G
- Does not include the delay in the backbone of the network in latency figures



# Highly reliable communication

Much better than 4G





# mMTC (IoT) Service Class

- Low-power Wide-area (LPWA)
- 160 bits/sec (up to 10 Kb/sec)
- 1 million devices / km<sup>2</sup>
- Round trip latency of 10 seconds with 20-byte payload
- Low cost hardware
- Not available now in 5G





# Current State of mMTC

- 5G mMTC standards are being worked on
- Current 5G not optimized for packet size, short sessions
- Inefficient control signaling 100 bytes of signaling to send 10 bytes of data
- Present channel coding schemes are inefficient with small data packets
- 5G uses higher power than 4G
- LTE services have been adopted as part of 5G



# **Other Issues with 5G**



# mmWave signals are blocked by walls, windows, trees, cars, people, rain, or snow



### mmWave signals don't transmit very far

C-net Reported best coverage is line of sight 100 to 300 ft from base station

### Phones use higher power for mmWave band

· Phone switches to lower band or 4G at high ambient temperature



Ð

### Base stations use 3 times the power of LTE – not green



Interference with weather satellites by mmWave frequencies



# LTE (4G) is being expanded for IoT Services

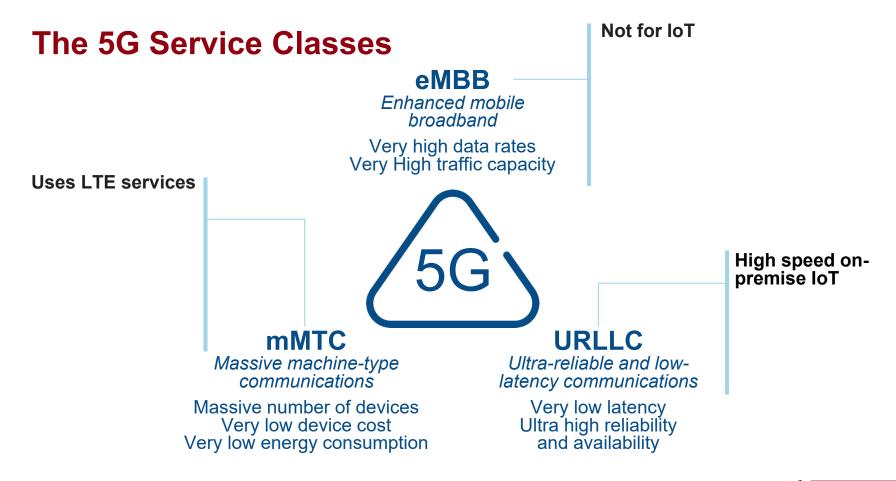
×



# NB-IoT and LTE-M (also called CAT-M)

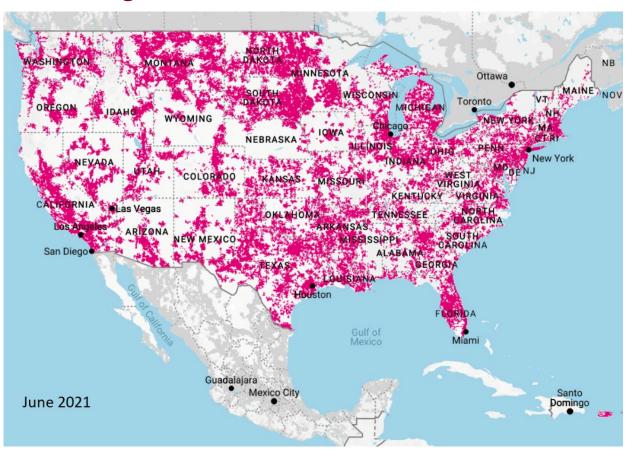
- Coverage in the U.S. is good.
- 50,000 devices per cell
- NB-IoT and LTE-M will coexist with 5G for years into the future
- Now part of 5G mMTC spec
- NB-IoT not suitable for mobile lack automatic zone switching

# Non-cellular services are not included in 5G, but will still work


- LoRa, Sigfox and others
- Use unlicensed spectrum lower cost airtime
- Not available most places

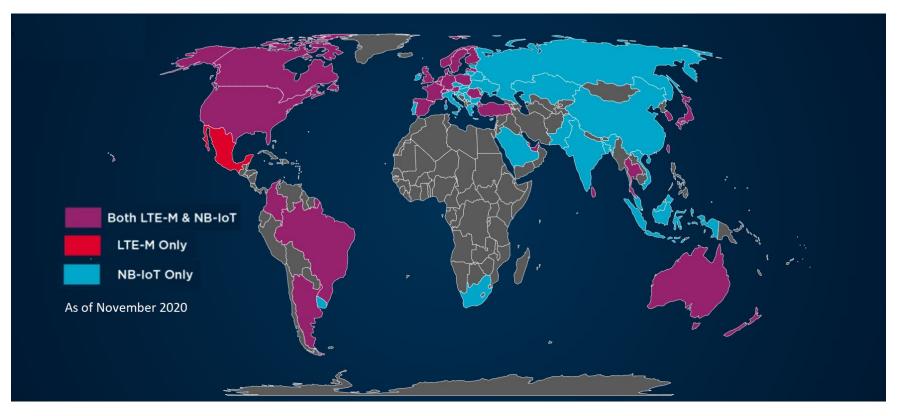


# **Comparison of Existing IoT Wireless Standards**


|                | NB-IoT<br>NB1    | NB-loT<br>NB2      | CAT-M1<br>LTE-M  | CAT-M2<br>LTE-M  | LoRa                  | Sigfox               |
|----------------|------------------|--------------------|------------------|------------------|-----------------------|----------------------|
| Range          | 1-50 km          | 1-50 km            | 1-50 km          | 1-50 km          | 2-50 km               | 10-50 km             |
| Data rate      | 26-66<br>Kbits/s | 120-150<br>Kbits/s | 1 Mbits/s        | 4-7 Mbit/s       | 200-50K bits/s        | 300 bits/s           |
| Supports Voice | No               | No                 | Yes              | Yes              | No                    | No                   |
| Network        | Public           | Public             | Public           | Public           | Public or<br>Private  | Public               |
| Available      | Good<br>coverage | Good<br>coverage   | Good<br>coverage | Good<br>coverage | Yes<br>Limited public | 30% of US population |








### **NB-IoT Coverage** by T-Mobile, June 2021





## **NB-IoT and LTE-M Deployment**





### LPWAN (IoT) Compared to Others Power – How much? How far?

|      | 100 bps                                                       |                                          | 10K bps                                             |                              | 40K bps                            |                      |
|------|---------------------------------------------------------------|------------------------------------------|-----------------------------------------------------|------------------------------|------------------------------------|----------------------|
| 1 m  | BLE4/Zigbee<br>BLE Mesh<br>LoRa<br>Sigfox<br>NB-IoT<br>CAT-M1 | 0.15<br>0.15<br>0.5<br>0.5<br>0.5<br>0.5 | BLE4/Zigbee<br>BLE Mesh<br>LoRa<br>NB-IoT<br>CAT-M1 | 7.5<br>7.5<br>10<br>20<br>20 | Zigbee<br>LoRa<br>NB-IoT<br>CAT-M1 | 30<br>20<br>50<br>50 |
| 50 m | Zigbee<br>LoRa<br>Sigfox<br>NB-IoT<br>CAT-M1                  | 20<br>0.5<br>0.5<br>1.0<br>1.0           | Zigbee<br>LoRa<br>NB-IoT<br>CAT-M1                  | 30<br>20<br>30<br>30         | NB-IoT<br>CAT-M1                   | 100<br>100           |
| 1 km | LoRa<br>Sigfox<br>NB-IoT<br>CAT-M1                            | 20<br>20<br>20<br>20                     | NB-IoT<br>CAT-M1                                    | 100<br>100                   | NB-IoT<br>CAT-M1                   | 500<br>500           |

Units: mW

Voler systems

### What should be considered for tradeoffs?

- Data rate
- Transmission distance
- Power Consumption
- Cost
- Licensed vs unlicensed
  spectrum
- Carrier deployed vs
  customer deployed
- Availability of technology

- Density of end devices
- Where it gets deployed
- Firmware updates
- Drivers for your OS
- Component/ module selection
- Antennas



# Let Voler Help You Succeed!

Voler designs IoT and wearable devices with expertise in wireless communication and sensors

Walt Maclay, Voler Systems Walt@volersystems.com 408-245-9844 ext 101

Quality Electronic Design & SoftwareWearable Devices | Sensor Interfaces | Wireless | Medical Devices

Slides will be at www.volersystems.com

